资源类型

期刊论文 739

年份

2024 3

2023 58

2022 50

2021 50

2020 39

2019 32

2018 42

2017 28

2016 32

2015 32

2014 26

2013 32

2012 27

2011 34

2010 35

2009 45

2008 41

2007 39

2006 16

2005 8

展开 ︾

关键词

三峡工程 3

优化设计 3

耐久性 3

飞机结构 3

DSM(设计结构矩阵) 2

产业结构 2

人工智能 2

关键技术 2

可持续发展 2

数值模拟 2

机器学习 2

机械结构 2

疲劳寿命 2

结构调整 2

能源结构 2

腐蚀 2

规划 2

设计 2

3-酰基硫代四酸 1

展开 ︾

检索范围:

排序: 展示方式:

URANS simulation of the turbulent flow in tight lattice bundle

Yiqi YU, Yanhua YANG

《能源前沿(英文)》 2011年 第5卷 第4期   页码 404-411 doi: 10.1007/s11708-011-0165-7

摘要: The flow structure in tight lattice is still of great interest to nuclear industry. An accurate prediction of flow parameter in subchannels of tight lattice is likable. Unsteady Reynolds averaged Navier Stokes (URANS) is a promising approach to achieve this goal. The implementation of URANS approach will be validated by comparing computational results with the experimental data of Krauss. In this paper, the turbulent flow with different Reynolds number (5000–215000) and different pitch-to-diameter( / ) (1.005–1.2) are simulated with computational fluid dynamics (CFD) code CFX12. The effects of the Reynolds number and the bundle geometry ( / ) on wall shear stress, turbulent kinetic energy, turbulent mixing and large scale coherent structure in tight lattice are analyzed in details. It is hoped that the present work will contribute to the understanding of these important flow phenomena and facilitate the prediction and design of rod bundles.

关键词: tight rod bundle     flow structure     unsteady Reynolds averaged Navier Stokes (URANS)    

Estimation of photolysis half-lives of dyes in a continuous-flow system with the aid of quantitativestructure-property relationship

Davoud BEIKNEJAD,Mohammad Javad CHAICHI

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 683-692 doi: 10.1007/s11783-014-0680-y

摘要: In this paper the photolysis half-lives of the model dyes in water solutions and under ultraviolet (UV) radiation were determined by using a continuous-flow spectrophotometric method. A quantitative structure-property relationship (QSPR) study was carried out using 21 descriptors based on different chemometric tools including stepwise multiple linear regression (MLR) and partial least squares (PLS) for the prediction of the photolysis half-life ( ) of dyes. For the selection of test set compounds, a K-means clustering technique was used to classify the entire data set, so that all clusters were properly represented in both training and test sets. The QSPR results obtained with these models show that in MLR-derived model, photolysis half-lives of dyes depended strongly on energy of the highest occupied molecular orbital ( ), largest electron density of an atom in the molecule ( ) and lipophilicity (log ). While in the model derived from PLS, besides aforementioned and descriptors, the molecular surface area ( ), molecular weight ( ), electronegativity ( ), energy of the second highest occupied molecular orbital ( ) and dipole moment ( ) had dominant effects on logt values of dyes. These were applicable for all classes of studied dyes (including monoazo, disazo, oxazine, sulfonephthaleins and derivatives of fluorescein). The results were also assessed for their consistency with findings from other similar studies.

关键词: dye     photolysis half-life     quantitative structure-property relationship     continuous-flow     stepwise multiple linear regression     partial least squares    

Decontamination efficiency and root structure change in the plant-intercropping model in vertical-flow

Yonghua CHEN, Xiaofu WU, Mingli CHEN, Kelin LI, Jing PENG, Peng ZHAN

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 906-912 doi: 10.1007/s11783-013-0579-z

摘要: Subtropical climatic conditions can contribute to the death of the aerial parts of constructed wetland plants in winter. This presents a barrier to the widespread application of constructed wetland and is an issue that urgently needs to be solved. Three contrasting experiments, the plant-intercropping model (A), the warm-seasonal plant model (B), and the non-plant model (C), were studied in terms of their efficiency in removing pollutants, and the change in root structure of plants in the plant-intercropping model within the vertical-flow constructed wetlands. The results indicate that model A was able to solve the aforementioned problem. Overall, average removal rates of three pollutants (COD , total nitrogen (TN) and total phosphorous (TP)) using model A were significantly higher than those obtained using models B and C ( <0.01). Moreover, no significant differences in removal rates of the three pollutants were detected between A and B during the higher temperature part of the year ( >0.05). Conversely, removal rates of the three pollutants were found to be significantly higher using model A than those observed using model B during the lower temperature part of the year ( <0.01). Furthermore, the morphologies and internal structures of plant roots further demonstrate that numerous white roots, whose distribution in soil was generally shallow, extend further under model A. The roots of these aquatic plants have an aerenchyma structure composed of parenchyma cells, therefore, roots of the cold-seasonal plants with major growth advantages used in A were capable of creating a more favorable vertical-flow constructed wetlands media-microenvironment. In conclusion, the plant-intercropping model (A) is more suitable for use in the cold environment experienced by constructed wetland during winter.

关键词: vertical-flow constructed wetlands     plant intercropping model     warm seasonal plant model    

Image analyses for video-based remote structure vibration monitoring system

Yang YANG,Xiong (Bill) YU

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 12-21 doi: 10.1007/s11709-016-0313-6

摘要: Video-based vibration measurement is a cost-effective way for remote monitoring the health conditions of transportation and other civil structures, especially for situations where accessibility is restricted and does not allow installation of conventional monitoring devices. Besides, video-based system is global measurement. The technical basis of video-based remote vibration measurement system is digital image analysis. Comparison of the images allow the field of motion to be accurately delineated. Such information is important to understand the structure behaviors including the motion and strain distribution. This paper presents system and analyses to monitor the vibration velocity and displacement field. The performance is demonstrated on a testbed of model building. Three different methods (i.e., frame difference method, particle image velocimetry, and optical Flow Method) are utilized to analyze the image sequences to extract the feature of motion. The Performance is validated using accelerometer data. The results indicate that all three methods can estimate the velocity field of the model building, although the results can be affected by factors such as background noise and environmental interference. Optical flow method achieved the best performance among these three methods studied. With further refinement of system hardware and image processing software, it will be developed into a remote video based monitoring system for structural health monitoring of transportation infrastructure to assist the diagnoses of its health conditions.

关键词: structure health monitoring     velocity estimation     frame difference     PIV     optical-flow method    

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

《能源前沿(英文)》 2017年 第11卷 第3期   页码 401-409 doi: 10.1007/s11708-017-0496-0

摘要: As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH) nanoparticles as the cathode material, nano-sized β-Ni(OH) particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH) was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH) could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized β-Ni(OH) was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated using X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH) and g-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.

关键词: nano-suspension flow battery     β-Ni(OH)2     scanning electronic microscopy (SEM)     X-ray diffraction (XRD)     X-ray adsorption near edge structure (XANES)     extended X-ray absorption fine structure (EXAFS)    

Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow

Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1074-3

摘要:

Methane yield increased 22 times from low-strength wastewater by applying conductive fillers.

Conductive fillers accelerated the start-up stage of anaerobic biofilm reactor.

Conductive fillers altered methanogens structure.

关键词: Low-strength wastewater     Methane production     Conductive filler     Microbial community structure    

Modeling process-structure-property relationships for additive manufacturing

Wentao YAN, Stephen LIN, Orion L. KAFKA, Cheng YU, Zeliang LIU, Yanping LIAN, Sarah WOLFF, Jian CAO, Gregory J. WAGNER, Wing Kam LIU

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 482-492 doi: 10.1007/s11465-018-0505-y

摘要:

This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the process-structure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a high-efficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.

关键词: additive manufacturing     thermal fluid flow     data mining     material modeling    

Numerical study of internal flow field and flow passage improvement of an inlet particle separator

Florian PAOLI, Tong WANG

《能源前沿(英文)》 2011年 第5卷 第4期   页码 386-397 doi: 10.1007/s11708-011-0156-8

摘要: By performing gas flow field numerical simulations for several inlet Reynolds numbers (from 2 × 10 to 9 × 10 ) and byflow ratios (from 10% to 20%), the present study has proposed to improve the flow passage of an inlet particle separator. An adjacent objective of the study is to lower pressure losses of the inlet particle separator (IPS). No particle has been included in the gas flow for a -epsilon turbulence model. The velocity distribution in different sections and the pressure coefficient along the duct have been analyzed, which indicates that there exist important low-velocity regions and vortices in the separation area. Therefore, the profile of streamlines along the original passage has been considered. This profile illustrated a vacuum region in the same area. All investigations suggest that the separation area is the most critical one for fulfilling the objective on pressure losses limitation. Then the flow passage improvement method has focused on the separation area. An improved shape has been designed in order to suit smoothly to the streamlines in this region. Similar numerical studies as those for the original shape have been conducted on this improved shape, confirming some considerable enhancements compared with the original shape. The significant vortices which appear in the original shape reduce in amount and size. Besides, pressure losses are greatly decreased in both outlets (up to 30% for high Reynolds number) and the flow is uniform at the main outlet. Subsequent engineering surveys could rely on expressions obtained for in both outlets which extend the pressure losses for a wide range of inlet Reynolds numbers. As a result, the numerical calculations demonstrate that the flow passage improvement method applied in this study has succeeded in designing a shape which enhances the flow behavior.

关键词: streamlines     pressure losses     flow passage improvement     inlet particle separator (IPS)    

Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 484-497 doi: 10.1007/s11705-021-2074-6

摘要: The nanocomposites of flower-like nickel phyllosilicate particles incorporated into epoxy resin were fabricated via an in-situ mixing process. The flower-like nickel phyllosilicate particles were firstly synthesized using a mild self-sacrificial templating method, and the morphology and lamellar structure were examined carefully. Several properties of mechanical, thermal and tribological responses of epoxy nanocomposites were performed. It was demonstrated that adequate flower-like nickel phyllosilicate particles dispersed well in the matrix, and the nanocomposites displayed enhanced tensile strength and elastic modulus but decreased elongation at break as expected. In addition, friction coefficient and wear rate were increased first and then decreased along with the particle content, and showed the lowest values at a mass fraction of 5%. Nevertheless, the incorporated flower-like nickel phyllosilicate particles resulted in the continuously increasing thermal stability of epoxy resin (EP) nanocomposites. This study revealed the giant potential of flower-like particles in preparing high-quality EP nanocomposites.

关键词: nickel phyllosilicate     flow-like structure     mechanical property     thermal stability     tribological performance    

HY-2卫星地面应用系统综述

蒋兴伟,林明森,张有广

《中国工程科学》 2014年 第16卷 第6期   页码 4-12

摘要:

海洋二号(HY-2)卫星地面应用系统是HY-2 卫星工程五大系统之一,具备HY-2 卫星数据的接收、处理、定标和验证以及数据应用等功能。HY-2 卫星地面应用系统具备稳定可靠运行的卫星接收系统,接收我国南海、东海、黄海、渤海及东北亚周边海域的实时数据;建设了包括多星运行计划管理、接收预处理、精密定轨、运控通信、数据处理、产品存档及分发服务和业务应用在内的HY-2 卫星数据处理中心,每天处理海洋动力环境产品并向国内外用户提供数据分发及应用服务。为了全面的介绍HY-2 卫星地面应用系统,本文分别对地面应用系统中主要分系统的组成、功能和业务流程等进行了综述。

关键词: HY-2 卫星     地面应用系统     组成     功能     工作流程    

物质流分析的跟踪观察法

陆钟武

《中国工程科学》 2006年 第8卷 第1期   页码 18-25

摘要:

流动,是物质(如铜、铝等)流动和流体流动二者所具有的基本特征,基于这个论点,简要地回顾了流体力学中研究流体流动的两种方法,即拉格朗日法和欧拉法;相应地提出了物质流分析的两种方法,即跟踪观察法和定点观察法。由于前者在文献中未见报道,因此对它进行了重点说明。强调了物质流的跟踪观察法既适用于稳态物质流(产品产量不变),也适用于非稳态物质流(产品产量增长或下降)。以钢铁产品生命周期的铁流图为例,说明了物质流的跟踪模型。在引入了物质流的非稳度后,提出了物质流各项指标的计算式,以及它们之间的相互关系。以瑞典铅酸电池系统为对象,计算了其中铅流的各项指标,并进行了必要的分析。

关键词: 物质流的研究方法     物质流的跟踪观察法     物质流的基本公式     物质流的非稳度    

UPFC setting to avoid active power flow loop considering wind power uncertainty

Shenghu LI, Ting WANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 165-175 doi: 10.1007/s11708-020-0686-z

摘要: The active power loop flow (APLF) may be caused by impropriate network configuration, impropriate parameter settings, and/or stochastic bus powers. The power flow controllers, e.g., the unified power flow controller (UPFC), may be the reason and the solution to the loop flows. In this paper, the critical existence condition of the APLF is newly integrated into the simultaneous power flow model for the system and UPFC. Compared with the existing method of alternatively solving the simultaneous power flow and sensitivity-based approaching to the critical existing condition, the integrated power flow needs less iterations and calculation time. Besides, with wind power fluctuation, the interval power flow (IPF) is introduced into the integrated power flow, and solved with the affine Krawcyzk iteration to make sure that the range of active power setting of the UPFC not yielding the APLF. Compared with Monte Carlo simulation, the IPF has the similar accuracy but less time.

关键词: active power loop flow (APLF)     unified power flow controller (UPFC)     wind power uncertainty     interval power flow (IPF)    

A novel flow electrode capacitive deionization device with spindle-shaped desalting chamber

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1800-y

摘要:

● A spindle-shaped influent chamber was designed and equipped in FCDI system.

关键词: Spindle-shaped chamber     Desalination performance     Flow electrode capacitive deionization    

Simulation of horizontal slug-flow pneumatic conveying with kinetic theory

GU Zhengmeng, GUO Liejin

《能源前沿(英文)》 2007年 第1卷 第3期   页码 336-340 doi: 10.1007/s11708-007-0050-6

摘要: Wavelike slug-flow is a representative flow type in horizontal pneumatic conveying. Kinetic theory was introduced to establish a 3D kinetic numerical model for wavelike slug gas-solid flow in this paper. Wavelike motion of particulate slugs in horizontal pipes was numerically investigated. The formation and motion process of slugs and settled layer were simulated. The characteristics of the flow, such as pressure drop, air velocity distribution, slug length and settled layer thickness, and the detailed changing characteristics of slug length and settled layer thickness with air velocity were obtained. The results indicate that kinetic theory can represent the physical characteristics of the non-suspension dense phase flow of wavelike slug pneumatic conveying. The experiment in this paper introduced a new idea for the numerical calculation of slug-flow pneumatic conveying.

关键词: velocity distribution     detailed     slug-flow     gas-solid     theory    

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox flow

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1221-1230 doi: 10.1007/s11705-023-2298-8

摘要: The vanadium redox flow battery with a safe and capacity-controllable large-scale energy storage system offers a new method for the sustainability. In this case, acetic acid, methane sulfonic acid, sulfonic acid, amino methane sulfonic acid, and taurine are used to overcome the low electrolyte energy density and stability limitations, as well as to investigate the effects of various organic functional groups on the vanadium redox flow battery. When compared to the pristine electrolyte (0.22 Ah, 5.0 Wh·L–1, 85.0%), the results show that taurine has the advantage of maintaining vanadium ion concentrations, discharge capacity (1.43 Ah), energy density (33.9 Wh·L–1), and energy efficiency (90.5%) even after several cycles. The acetic acid electrolyte is more conducive to the low-temperature stability of the V(II) electrolyte (177 h at −25 °C) than pristine (82 h at −2 °C). The –SO3H group, specifically the coaction of the –NH2 and –SO3H groups, improves electrolyte stability. The –NH2 and –COOH additive groups improved conductivity and electrochemical activity.

关键词: vanadium redox flow battery     functional groups     organic additives     energy density     stability    

标题 作者 时间 类型 操作

URANS simulation of the turbulent flow in tight lattice bundle

Yiqi YU, Yanhua YANG

期刊论文

Estimation of photolysis half-lives of dyes in a continuous-flow system with the aid of quantitativestructure-property relationship

Davoud BEIKNEJAD,Mohammad Javad CHAICHI

期刊论文

Decontamination efficiency and root structure change in the plant-intercropping model in vertical-flow

Yonghua CHEN, Xiaofu WU, Mingli CHEN, Kelin LI, Jing PENG, Peng ZHAN

期刊论文

Image analyses for video-based remote structure vibration monitoring system

Yang YANG,Xiong (Bill) YU

期刊论文

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

期刊论文

Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow

Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang

期刊论文

Modeling process-structure-property relationships for additive manufacturing

Wentao YAN, Stephen LIN, Orion L. KAFKA, Cheng YU, Zeliang LIU, Yanping LIAN, Sarah WOLFF, Jian CAO, Gregory J. WAGNER, Wing Kam LIU

期刊论文

Numerical study of internal flow field and flow passage improvement of an inlet particle separator

Florian PAOLI, Tong WANG

期刊论文

Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites

期刊论文

HY-2卫星地面应用系统综述

蒋兴伟,林明森,张有广

期刊论文

物质流分析的跟踪观察法

陆钟武

期刊论文

UPFC setting to avoid active power flow loop considering wind power uncertainty

Shenghu LI, Ting WANG

期刊论文

A novel flow electrode capacitive deionization device with spindle-shaped desalting chamber

期刊论文

Simulation of horizontal slug-flow pneumatic conveying with kinetic theory

GU Zhengmeng, GUO Liejin

期刊论文

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox flow

期刊论文